Homework 1

(Problems from Hecht: 2.8, 2.39, 2.49, 2.54, 2.58; these are 1-5 below.)

1. It is possible to generate ultrasonic waves in crystals with wavelengths similar to those of light (5 $\times 10^{\wedge}-5 \mathrm{~cm}$) but with lower frequencies ($6 \times 10^{\wedge} 8 \mathrm{~Hz}$). Compute the corresponding speed of such a wave.
2. Determine which of the following describe traveling waves:
a. $\Psi(y, t)=e^{-\left(a^{2} y^{2}+b^{2} t^{2}-2 a b t y\right)}$
b. $\quad \Psi(z, t)=A * \sin \left(a z^{2}-b t^{2}\right)$
c. $\quad \Psi(x, t)=A * \sin 2 \pi\left(\frac{x}{a}+\frac{t}{b}\right)^{2}$
d. $\Psi(x, t)=A * \cos ^{2}[2 \pi(t-x)]$

Where appropriate, draw the profile, and find the speed and direction of motion.
3. Show that eqns. (2.64) and (2.65) in the text, which are plane waves of arbitrary form, satisfy the three-dimensional differential wave equation.
4. Write an expression in Cartesian coordinates for a harmonic plane wave of amplitude A and frequency ω propagating in the positive x-direction.
5. Make up a table with the columns headed by values of Θ running from $-\pi / 2$ to 2π running in intervals of $\pi / 4$. In each column, place the corresponding value of $\sin \theta$, and beneath those the values of $\sin (\Theta-\pi / 2)$. Next add these together, column by column, to yield the corresponding values of the function $\sin \theta+\sin (\theta-\pi / 2)$. Plot each of these three functions, noting their amplitude and phase.

