PHYS302 Fall 2023

Homework 1

(Problems from Hecht: 2.8, 2.39, 2.49, 2.54, 2.58; these are 1-5 below.)

- It is possible to generate ultrasonic waves in crystals with wavelengths similar to those of light (5 x 10^-5 cm) but with lower frequencies (6 x 10^8 Hz). Compute the corresponding speed of such a wave.
- 2. Determine which of the following describe traveling waves:
 - a. $\Psi(y,t) = e^{-(a^2y^2 + b^2t^2 2abty)}$
 - b. $\Psi(z,t) = A * \sin(az^2 bt^2)$
 - c. $\Psi(x,t) = A * \sin 2\pi (\frac{x}{a} + \frac{t}{b})^2$
 - d. $\Psi(x,t) = A * \cos^2[2\pi(t-x)]$

Where appropriate, draw the profile, and find the speed and direction of motion.

- 3. Show that eqns. (2.64) and (2.65) in the text, which are plane waves of arbitrary form, satisfy the three-dimensional differential wave equation.
- 4. Write an expression in Cartesian coordinates for a harmonic plane wave of amplitude A and frequency ω propagating in the positive x-direction.
- 5. Make up a table with the columns headed by values of Θ running from $-\pi/2$ to 2π running in intervals of $\pi/4$. In each column, place the corresponding value of sin Θ , and beneath those the values of sin ($\Theta \pi/2$). Next add these together, column by column, to yield the corresponding values of the function sin Θ + sin ($\Theta \pi/2$). Plot each of these three functions, noting their amplitude and phase.